Analysis Parameters Guide

This document provides comprehensive explanations of all analysis parameters used in HBAT for detecting and analyzing molecular interactions including hydrogen bonds, halogen bonds, and π interactions.

Overview

HBAT uses geometric criteria to identify molecular interactions based on distance and angle cutoffs. These parameters are based on established literature values but can be customized based on your specific analysis needs.

Default Parameter Values

Parameter

Default Value

Units

Description

H…A Distance

3.5

Å

Hydrogen-acceptor distance cutoff

D-H…A Angle

120.0

degrees

Donor-hydrogen-acceptor angle cutoff

D…A Distance

4.0

Å

Donor-acceptor distance cutoff

X…A Distance

4.0

Å

Halogen-acceptor distance cutoff

C-X…A Angle

120.0

degrees

Carbon-halogen-acceptor angle cutoff

H…π Distance

4.5

Å

Hydrogen-π center distance cutoff

D-H…π Angle

90.0

degrees

Donor-hydrogen-π angle cutoff

Hydrogen Bond Parameters

Hydrogen bonds are detected using three geometric criteria that must all be satisfied simultaneously.

H…A Distance Cutoff (Default: 3.5 Å)

Definition: The direct distance between the hydrogen atom (H) and the acceptor atom (A).

Physical significance:

  • Represents the actual electrostatic interaction distance

  • Primary determinant of hydrogen bond strength

  • Based on van der Waals radii and experimental observations

Geometric relationship:

Donor(D) — Hydrogen(H) ··· Acceptor(A)
                ↳ H...A distance ↲

Typical ranges:

  • Strong H-bonds: 1.5 - 2.2 Å (e.g., O-H···O⁻)

  • Moderate H-bonds: 2.2 - 2.5 Å (e.g., N-H···O)

  • Weak H-bonds: 2.5 - 3.5 Å (e.g., C-H···O)

Examples:

  • Asp OD1···HN Val: H…A = 2.1 Å (strong)

  • Ser OG···HN Gly: H…A = 2.8 Å (moderate)

  • Tyr OH···O backbone: H…A = 3.2 Å (weak but significant)

D-H…A Angle Cutoff (Default: 120°)

Definition: The angle formed by the donor atom (D), hydrogen atom (H), and acceptor atom (A).

Physical significance:

  • Ensures proper orbital overlap for hydrogen bonding

  • Reflects the directional nature of hydrogen bonds

  • More linear angles indicate stronger interactions

Geometric relationship:

       Acceptor(A)
          ↗
Donor(D) — Hydrogen(H)
     ↳ D-H...A angle ↲

Typical ranges:

  • Linear (strongest): 160° - 180°

  • Moderate: 140° - 160°

  • Weak but acceptable: 120° - 140°

  • Below 120°: Generally not considered hydrogen bonds

Examples:

  • Backbone N-H···O=C: ~165° (near linear, strong)

  • Side chain interactions: 130° - 150° (moderate)

  • Constrained geometries: 120° - 130° (weak)

D…A Distance Cutoff (Default: 4.0 Å)

Definition: The distance between the donor heavy atom (D) and acceptor atom (A).

Physical significance:

  • Acts as a geometric constraint and pre-filter

  • Ensures reasonable overall hydrogen bond geometry

  • Prevents detection of unrealistically extended interactions

Geometric relationship:

Donor(D) — Hydrogen(H) ··· Acceptor(A)
    ↳ D...A distance ↲

Relationship to H…A distance:

  • D…A distance ≈ H…A distance + D-H bond length (~1.0 Å)

  • Should always be larger than H…A distance

  • Typical difference: 0.5 - 1.5 Å

Examples:

  • If H…A = 2.8 Å, then D…A ≈ 3.1 Å

  • If H…A = 3.2 Å, then D…A ≈ 3.5 Å

Halogen Bond Parameters

Halogen bonds involve halogen atoms (F, Cl, Br, I) acting as electrophilic centers interacting with nucleophilic acceptors.

X…A Distance Cutoff (Default: 4.0 Å)

Definition: The distance between the halogen atom (X) and the acceptor atom (A).

Physical significance:

  • Based on the sum of van der Waals radii

  • Halogen bonds are typically longer than hydrogen bonds

  • Larger halogens can form longer interactions

Halogen-specific typical ranges:

  • Fluorine: 2.6 - 3.2 Å

  • Chlorine: 3.0 - 3.6 Å

  • Bromine: 3.2 - 3.8 Å

  • Iodine: 3.4 - 4.0 Å

Examples:

  • Br···N His: 3.4 Å (strong halogen bond)

  • Cl···O backbone: 3.2 Å (moderate)

  • I···S Met: 3.8 Å (weak but significant)

C-X…A Angle Cutoff (Default: 120°)

Definition: The angle formed by the carbon atom (C), halogen atom (X), and acceptor atom (A).

Physical significance:

  • Reflects the directionality of the σ-hole on the halogen

  • More linear angles indicate stronger halogen bonds

  • Based on the electron density distribution around halogens

Geometric relationship:

       Acceptor(A)
          ↗
Carbon(C) — Halogen(X)
      ↳ C-X...A angle ↲

Typical ranges:

  • Strong halogen bonds: 160° - 180°

  • Moderate: 140° - 160°

  • Weak but detectable: 120° - 140°

π Interaction Parameters

π interactions involve hydrogen atoms interacting with aromatic ring systems (PHE, TYR, TRP, HIS).

H…π Distance Cutoff (Default: 4.5 Å)

Definition: The distance between a hydrogen atom and the centroid of an aromatic ring.

Physical significance:

  • Represents the interaction between H and the π electron cloud

  • Generally longer than conventional hydrogen bonds

  • Includes both direct H…π and edge-to-face interactions

Ring centroid calculation:

  • Average position of aromatic carbon atoms

  • Represents the center of electron density

Typical ranges:

  • Strong π interactions: 2.4 - 3.2 Å

  • Moderate: 3.2 - 4.0 Å

  • Weak: 4.0 - 4.5 Å

Examples:

  • Arg NH···π Phe: 3.1 Å (cation-π interaction)

  • backbone NH···π Trp: 3.6 Å (moderate)

  • side chain OH···π Tyr: 4.2 Å (weak)

D-H…π Angle Cutoff (Default: 90°)

Definition: The angle between the D-H bond vector and the vector from H to the π centroid.

Physical significance:

  • Different from other angle definitions (measures approach angle)

  • Smaller angles indicate more perpendicular approach to ring

  • Reflects optimal orbital overlap with π system

Geometric relationship:

    π Ring Centroid
         ↑
         |
Donor(D) — Hydrogen(H)
     ↳ D-H...π angle ↲

Angle interpretation:

  • 0° - 30°: Perpendicular approach (optimal)

  • 30° - 60°: Good π interaction geometry

  • 60° - 90°: Acceptable but weaker

  • > 90°: Generally not considered π interactions

General Analysis Parameters

Covalent Bond Detection Factor (Default: 1.2)

Definition: Multiplier applied to covalent radii for bond detection.

Purpose:

  • Distinguishes between covalent bonds and non-covalent interactions

  • Accounts for thermal motion and structural flexibility

  • Prevents false positive interactions between bonded atoms

Calculation:

Covalent cutoff = (radius₁ + radius₂) × factor

Typical values:

  • 1.0: Strict covalent bond detection

  • 1.2 (default): Standard with some flexibility

  • 1.5: More permissive for low-resolution structures

Analysis Mode

Complete mode (default):

  • Analyzes all possible donor-acceptor pairs

  • Includes inter-residue and intra-residue interactions

  • Comprehensive analysis suitable for most applications

Local mode:

  • Only analyzes intra-residue interactions

  • Faster computation for large structures

  • Useful for studying local structural effects

Parameter Tuning Guidelines

High-Resolution Structures (< 1.5 Å)

Recommended adjustments:

  • H…A distance: 3.2 Å (stricter)

  • D-H…A angle: 130° (more stringent)

  • D…A distance: 3.7 Å (tighter constraint)

Rationale: High-resolution data allows for more precise geometric criteria.

Low-Resolution Structures (> 2.5 Å)

Recommended adjustments:

  • H…A distance: 3.8 Å (more permissive)

  • D-H…A angle: 110° (more tolerant)

  • D…A distance: 4.3 Å (looser constraint)

Rationale: Coordinate uncertainty requires more tolerant criteria.

NMR Structures

Recommended adjustments:

  • All distance cutoffs: +0.2 Å

  • All angle cutoffs: -10°

  • Consider ensemble averaging

Rationale: NMR structures have inherent flexibility and coordinate uncertainty.

Focusing on Strong Interactions Only

Recommended adjustments:

  • H…A distance: 2.8 Å

  • D-H…A angle: 140°

  • X…A distance: 3.5 Å

Rationale: Identifies only the most significant interactions.

Common Use Cases

Drug Design Applications

Parameters:

  • Standard defaults with H…A ≤ 3.2 Å

  • Include halogen bonds (important for drug interactions)

  • Consider π interactions for aromatic compounds

Focus: Protein-ligand interfaces, binding site analysis

Protein Stability Studies

Parameters:

  • Complete mode with standard defaults

  • Include all interaction types

  • Consider cooperativity chains

Focus: Secondary structure stabilization, fold stability

Membrane Protein Analysis

Parameters:

  • Slightly more permissive due to lower resolution

  • H…A distance: 3.7 Å

  • Include π interactions (common in membrane environments)

Focus: Transmembrane regions, lipid-protein interactions

Enzyme Mechanism Studies

Parameters:

  • Strict criteria for active site (H…A ≤ 3.0 Å)

  • Standard criteria for overall structure

  • Focus on cooperativity chains

Focus: Catalytic residues, substrate binding

Parameter Presets

HBAT provides example parameter presets for common analysis scenarios, as well as the ability to save and load custom presets.

Example Presets

The example_presets/ folder contains predefined parameter sets optimized for different structure types and analysis goals:

Preset File

Description

Use Case

🔬 high_resolution.hbat

Strict criteria for high-quality structures

X-ray structures with excellent resolution (< 1.5Å)

⚙️ standard_resolution.hbat

Default HBAT parameters

Most protein crystal structures (1.5-2.5Å)

📐 low_resolution.hbat

More permissive criteria

Lower resolution structures (> 2.5Å)

🧬 nmr_structures.hbat

Accounts for structural flexibility

Solution NMR structures

💪 strong_interactions_only.hbat

Very strict criteria

Focus on the strongest interactions

💊 drug_design_strict.hbat

Optimized for protein-ligand analysis

Drug discovery applications

🧱 membrane_proteins.hbat

Adapted for membrane environments

Transmembrane proteins

🌐 weak_interactions_permissive.hbat

Captures weak but significant interactions

Comprehensive interaction analysis

Preset Management

Loading Example Presets

  1. Click “Load Preset…” button in the GUI

  2. Navigate to the example_presets/ folder (opens by default)

  3. Select the appropriate .hbat preset file

  4. Parameters are automatically applied

Saving Custom Presets

  1. Configure your desired parameters in the GUI

  2. Click “Save Preset…” button

  3. Choose filename and location

  4. The preset is saved as a .hbat file

Using Presets

# Example: Load a preset and analyze
# 1. Open HBAT GUI
# 2. Load preset: example_presets/drug_design_strict.hbat
# 3. Load PDB file and run analysis

Preset File Format

HBAT presets are saved as JSON files with the following structure:

{
  "format_version": "1.0",
  "application": "HBAT",
  "created": "2024-01-15T10:30:00.000000",
  "description": "Custom preset description",
  "parameters": {
    "hydrogen_bonds": {
      "h_a_distance_cutoff": 3.5,
      "dha_angle_cutoff": 120.0,
      "d_a_distance_cutoff": 4.0
    },
    "halogen_bonds": {
      "x_a_distance_cutoff": 4.0,
      "cxa_angle_cutoff": 120.0
    },
    "pi_interactions": {
      "h_pi_distance_cutoff": 4.5,
      "dh_pi_angle_cutoff": 90.0
    },
    "general": {
      "covalent_cutoff_factor": 1.2,
      "analysis_mode": "complete"
    }
  }
}

Preset Storage Locations

Example Presets (built-in):

  • Located in example_presets/ folder within the HBAT installation

  • Read-only preset files optimized for common scenarios

Custom Presets (user-created):

  • Windows: %USERPROFILE%\.hbat\presets\

  • macOS/Linux: ~/.hbat/presets/

  • Created when you save custom parameter configurations

Command Line Usage

Using Preset Files

# List all available presets
hbat --list-presets

# Use a specific preset
hbat protein.pdb --preset high_resolution
hbat protein.pdb --preset drug_design_strict
hbat protein.pdb --preset membrane_proteins

# Use preset with custom overrides
hbat protein.pdb --preset standard_resolution --hb-distance 3.2
hbat protein.pdb --preset nmr_structures --hb-angle 110 --da-distance 4.3

# Use custom preset file (full path)
hbat protein.pdb --preset /path/to/my_custom.hbat

# Use preset from current directory
hbat protein.pdb --preset my_custom.hbat

Preset Resolution Order:

  1. If the preset name is an absolute path and exists, use it directly

  2. If the preset name is a relative path and exists, use it from current directory

  3. Look for the preset in the example_presets/ directory (with or without .hbat extension)

  4. If not found, display an error and list available presets

Parameter Override Behavior:

  • When using --preset, the preset parameters are loaded first

  • Any additional CLI parameters will override the corresponding preset values

  • Only explicitly provided CLI parameters override preset values (not defaults)

Setting Custom Parameters

# Strict hydrogen bond detection
hbat protein.pdb --hb-distance 3.2 --hb-angle 130 --da-distance 3.7

# Include weak interactions
hbat protein.pdb --hb-distance 3.8 --hb-angle 110 --da-distance 4.3

# Focus on strong halogen bonds
hbat protein.pdb --xb-distance 3.5 --xb-angle 140

# Comprehensive π interaction analysis
hbat protein.pdb --pi-distance 5.0 --pi-angle 100

Parameter Validation

HBAT automatically validates parameter ranges:

  • Distance parameters: 0.1 - 10.0 Å

  • Angle parameters: 0.0 - 180.0°

  • Covalent factor: 0.5 - 3.0

Literature References

Hydrogen Bonds

  • Jeffrey, G.A. “An Introduction to Hydrogen Bonding” (1997)

  • Steiner, T. “The Hydrogen Bond in the Solid State” Angew. Chem. Int. Ed. 41, 48-76 (2002)

  • Donohue, J. “Selected Topics in Hydrogen Bonding” (1968)

Halogen Bonds

  • Metrangolo, P. et al. “Halogen Bonding: Fundamentals and Applications” (2008)

  • Cavallo, G. et al. “The Halogen Bond” Chem. Rev. 116, 2478-2601 (2016)

π Interactions

  • Meyer, E.A. et al. “Interactions with Aromatic Rings in Chemical and Biological Recognition” Angew. Chem. Int. Ed. 42, 1210-1250 (2003)

  • Salonen, L.M. et al. “Aromatic Rings in Chemical and Biological Recognition” Angew. Chem. Int. Ed. 50, 4808-4842 (2011)

Computational Methods

  • McDonald, I.K. & Thornton, J.M. “Satisfying Hydrogen Bonding Potential in Proteins” J. Mol. Biol. 238, 777-793 (1994)

  • Hubbard, R.E. & Haider, M.K. “Hydrogen Bonds in Proteins” (2001)


For questions about parameter selection or custom analysis requirements, please refer to the HBAT documentation or open an issue on the GitHub repository.